\(\int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [1060]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 311 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{b d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (A b^2-a (b B-a C)\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a b \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

-2*(A*b^2-a*(B*b-C*a))*sin(d*x+c)*sec(d*x+c)^(1/2)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+2*A*(cos(1/2*d*x+1/2*c
)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(
1/2)*sec(d*x+c)^(1/2)/a/d/(a+b*sec(d*x+c))^(1/2)+2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticP
i(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/b/d/(a+b*sec(d
*x+c))^(1/2)+2*(A*b^2-a*(B*b-C*a))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c
),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a/b/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1
/2)

Rubi [A] (verified)

Time = 1.15 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {4183, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)} \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2 C-a b B+A b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a b d \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{b d \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*A*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(a*d*Sqrt[a
+ b*Sec[c + d*x]]) + (2*C*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[Se
c[c + d*x]])/(b*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(A*b^2 - a*b*B + a^2*C)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]
*Sqrt[a + b*Sec[c + d*x]])/(a*b*(a^2 - b^2)*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) - (2*(A*b
^2 - a*(b*B - a*C))*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4183

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d)*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*
(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(a^2 - b^2)*(m + 1))), x] + Dist[d/(b*(a^2 - b^2)*
(m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A*b^2*(n - 1) - a*(b*B - a*C)*(n - 1)
 + b*(a*A - b*B + a*C)*(m + 1)*Csc[e + f*x] - (b*(A*b - a*B)*(m + n + 1) + C*(a^2*n + b^2*(m + 1)))*Csc[e + f*
x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} \left (-A b^2+a (b B-a C)\right )+\frac {1}{2} b (b B-a (A+C)) \sec (c+d x)-\frac {1}{2} \left (a^2-b^2\right ) C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\frac {1}{2} \left (-A b^2+a (b B-a C)\right )+\frac {1}{2} b (b B-a (A+C)) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )}+\frac {C \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{b} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {A \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{a}-\frac {\left (-A b^2+a (b B-a C)\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{a b \left (a^2-b^2\right )}+\frac {\left (C \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{b \sqrt {a+b \sec (c+d x)}} \\ & = -\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{a \sqrt {a+b \sec (c+d x)}}+\frac {\left (C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{b \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-A b^2+a (b B-a C)\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{a b \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{b d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{a \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-A b^2+a (b B-a C)\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{a b \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {2 A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 C \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{b d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (A b^2-a b B+a^2 C\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a b \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {2 \left (A b^2-a (b B-a C)\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx \]

[In]

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2), x]

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.70 (sec) , antiderivative size = 1721, normalized size of antiderivative = 5.53

method result size
default \(\text {Expression too large to display}\) \(1721\)
parts \(\text {Expression too large to display}\) \(2245\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/d/((a-b)/(a+b))^(1/2)/a/b/(a+b)*(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2
)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/((1
-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(A*((a-b)/(a+b))^(1/2)*b^2*(1-cos(d*x+c))^3*csc(d*x+c)^3-B*((a-b)/(a+b))
^(1/2)*a*b*(1-cos(d*x+c))^3*csc(d*x+c)^3+C*((a-b)/(a+b))^(1/2)*a^2*(1-cos(d*x+c))^3*csc(d*x+c)^3-A*(-(a*(1-cos
(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1
/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b-A*(-(a*(1-cos(d*x+c))^2*c
sc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*Elliptic
E(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2-B*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-
(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+
b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b+B*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c
))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-
cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b+2*C*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc
(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)
+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2+C*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-
b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c))
,(-(a+b)/(a-b))^(1/2))*a*b-C*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1
/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-
b))^(1/2))*a^2-2*C*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-co
s(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((a-b)
/(a+b))^(1/2))*a^2-2*C*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x+c))^2*b*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((
1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(a+b)/(a-b),I/((
a-b)/(a+b))^(1/2))*a*b+A*((a-b)/(a+b))^(1/2)*b^2*(-cot(d*x+c)+csc(d*x+c))-B*((a-b)/(a+b))^(1/2)*a*b*(-cot(d*x+
c)+csc(d*x+c))+C*((a-b)/(a+b))^(1/2)*a^2*(-cot(d*x+c)+csc(d*x+c)))/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-(1-cos(d*x
+c))^2*b*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(((1/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(((1/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + b/cos(c + d*x))^(3/2), x)